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The Effect of Disorientation on the Intensity Distribution of Non-crystalline Fibres. I. Theory 
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The intensity function in reciprocal space is derived for the case of non-crystalline fibres with a Gaussian 
distribution of orientations. An expression is found relating the observed intensity function with the 
weighted integral along a circle of the intensity derived from the molecular structure factor. From this 
result in the case where the layer-line width is very small a correction factor may be derived which, if 
applied to the observed intensity, yields the intensity which would be obtained from a perfectly orientated 
fibre. The general problem of correcting for disorientation can only be treated by a numerical decon- 
volution procedure. 

Introduction 

We are concerned with the problem of calculating the 
intensity to be observed in diffraction from slightly 
disorientated fibres and gels such as tobacco mosaic 
virus (see, for example, Franklin & Holmes, 1958) 
and non-crystalline DNA fibres (see Langridge, Wil- 
son, Hooper, Wilkins & Hamilton, 1960). Typically, 
such molecules are periodic in their length, so that 
the diffraction is confined to layer lines. However, the 
degree of correlation between the positions of neigh- 
bouring particles is slight so that each particle scatters 
independently. Furthermore, there is no azimuthal 
correlation between particles so that one observes, es- 
sentially, the cylindrically averaged scattering from a 
single particle. The intensity along each layer line is 
continuous, being an expression of the molecular trans- 
form, and there are no Bragg reflexions. Inevitably, the 
particle axes are not exactly parallel, and each point on 
any layer line becomes smeared out in reciprocal space 
into an arc forming part of a Debye-Scherrer ring. 
The observed intensity is thus related to the molecular 
transform by a folding process which we investigate 
below. 

The problem of calculating the intensity function 
from assemblages of molecules having partial alignment 
has been treated by Deas (1952). Deas expands the 
distribution function of particle axes in terms of spheri- 
cal harmonics, and in order to apply his results one 
must also expand the calculated intensities in spherical 
harmonics. These methods are admirable for large dis- 
orientations, but are inconvenient for the case of small 
disorientations outlined above. Moreover, further ana- 
lysis of the diffraction pattern frequently makes it 
desirable that one expresses one's results in cylindrical 
polar coordinates. Therefore the derivation given below 
does not follow Deas, but uses methods which allow 
the intensity to be expressed in cylindrical polar coor- 
dinates, and restricts discussion to the effects of small 
disorientations. 

Below we assume that overlap of layer lines does not 
occur, and that the particle distribution function has a 
simple form (Gaussian). 

The particle distribution function 

We consider a sol wherein all the particles are orien- 
tated about a common axis but are subject to random 
Brownian motion. The distribution of particles is given 
by the Boltzmann law. Thus, if the restoring force is 
a linear function of displacement, the probability of 
finding particles at an angle ~ to the common axis in 
an element of solid angle dQ is N(c0dQ/4~, where 

2 / \ -co 2 
N(a)= -a~-exp ~ 2~-~ ) (1) 

and where ~0 is a parameter depending upon concen- 
tration, pH, temperature, etc. that we shall call the 
disorientation parameter. 

Calculation of the intensity in the disorientated pattern 

Let the intensity function at the point B (Fig. 1) in 
reciprocal space be L It is convenient to refer to B 
by two coordinate systems: the polar coordinates v 
and a; and the Cartesian coordinates R and Z. 

The total intensity at B is calculated by integrating 
over all possible particle orientations taking account of 
the density of particles in any particular direction and 
strength of the intensity (from the calculated transform) 
that such particles contribute at B. This integration may 
be effected by evaluating the calculated intensity for 
any one cone of particles lying at an angle 7 to the 
line OB, by evaluating how many particles may lie 
between )J and )~+dy, and by integrating over all such 
cones. The calculated intensity from a general particle 
may be conveniently written as a function of the two 
orthogonal coordinates I and s. l and s give the posi- 
tion of the point B referred to the axis of the particle. 
Clearly for all particles lying on a cone of constant 
),, l and s are constant and the calculated intensity is 
constant. Furthermore 7, I, v and s are related by the 
right-angled triangle OAB so that 

l=  v cos y (2a) 

s = v sin y. (2b) 
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The calculated intensity may be written as the product  
of two terms: Icalc(s) describing the distribution along 
a layer line, and f ( l )  describing the distribution across 
a layer line. Performing the operat ion described above 
we find the total intensity at the point  B is 

Defining the function 

io(X) = I o ( x ) e  - x  

we may regroup (8), giving 

f dO I =  I¢~,¢(s)f(t)N(a) 4n (3) 
t2 lf f 

- I¢.~(s)f(l)N(~) sin 7d~'d~0 (3a) 
4n ,p=0 ~=0 

where a is the disorientation angle (O"OC in Fig. 1) 
and where ~o is the azimuthal  coordinate a round OB 
of the general particle with axis OC. 

To proceed further in the evaluation of  (3a) we 
t ransform variables so as to consider together all planes 
with height l in the calculated intensity distribution. 
If  the thickness of such a plane is dl then the range 
(dT) of particle orientations which can contribute to 
the point  B by means of planes in the calculated in- 
tensity distributions at height l is found by differentiat- 
ing (2a), viz. 

dl - - -  = sin 7d?.  p 

Substituting l for ? in (3a) we get 

S I  ° 1 ~= Ic.,o(s)f(1)N(a)dld~o; (4) I = - T ~  ,=o z=o 

(4) is generally true. Now 

2 a z 
N ( a ) =  ---~- exp ( -  -~o2) (1) 

and referring to the stereogram (Fig. 2) we see that  

cos a = cos 7 cos a + sin 7 sin cr cos ~o. (5) 

Hence for small a, by substitution and expansion 

zl sR 
½~2~, 1 D2 O~ COS ~O. (6) 

Inserting (6) in (1) and (1) in (4) we obtain 

SS" 1 2~ I~.,¢(s)f(1) 
I =  2-~o~ ,=o l=o 

[ (7) X 

Using the integral representation of a Bessel function 

1 12'~ exp (x cos ~0)de I0(x)= ~ ,=0 

[see Abramowitz  & Stegun (1965), p. 374], (7) becomes 

1 o 1 z l  

Z axis 

0" , . . . .R. . .  B 
s 

A s 

Fig. 1. The variables used in deriving the disorientation correc- 
tion. The general point B may be described by the reciprocal- 
space Cartesian coordinates (R,Z) or the spherical polar 
coordinates (v, a). For any given particle the Cartesian 
coordinates of B in the particle frame of reference are (s, l). 
The particles contributing intensity to B may be grouped in 
cones of semi-angle ), corresponding to sheets of intensity at 
height I in the particle frame of reference. The angle of dis- 
orientation of a general particle (e.g., a particle with axis 
OC) is (O"CO=e). ~o is the azimuthal coordinate of the 
general particle OC measured around an axis defined by the 
vector v (OB). 

(8) Fig. 2. Stereogram showing the relationship between the angles 
~, 7, ~o and a. 
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1 f ° [ (s-R)2-f -(Z-l)21 
I= yO-yo ,=olca,c(s)f(l) exp -- 2-~oT~v z -J 

x i 0 ( S ~ ) d / .  (9) 

Equation (9) is the required relationship between lca~c 
and L 

The structure of the integrand in equation (9) may 
be understood by reference to Fig. 3(a) which shows the 
geometrical relationships between the variables l,s,v, 
and y embodied in equation (2). Furthermore Fig. 3(a) 
may be reinterpreted as representing a plane through 
the intensity field of a perfectly orientated fibre. As 
l varies between l=  0 and l=  v the point of integration 
follows a circular arc. The point B in Fig. 3(a) repre- 
sents the origin of the exponential factor in (9). Con- 
sidering the general point X, if we replace the chord 
BX by the arc BX (which is valid if ~o is small) the 
exponential term in (9) may be written 

( y - G )  2 
exp 2ao2 • (10) 

circle of integration 
I 

B 

~ 5 
0 

@) 

B 

~ 5  
0 

(b) 
Fig. 3. (a) The circular arc shows the path of integration (equa- 

tion 9) through the calculated intensity. The point B is the 
general point at which the observed intensity function is to be 
evaluated. The argument of the Gaussian weighting func- 
tion in (9) is proportional to the square of the distance 
between B and a general point X on the circle of integration. 
This is approximately equal to the chord BX. (b) In many 
situations the calculated intensity can be represented by a 
very thin layer line (heavy line l= Z0). The integration (equa- 
tion 9) reduces to evaluating the factors of the integrand at 
the point (D) where the circle of integration intersects the 
layer line. This point corresponds to the place at which the 
Debye-Scherrer arc through the general point B intersects the 
layer line (height Z0) from the perfectly orientated particle. 

Returning to 7 as a variable of integration, 

1 !~=0 I ca l¢ (S ) f ( l )  [ (,__~)2] I= 
~ exp t 2~o J 

x i o [  s i n T s i n a ]  
0Co2 siny@ (11) 

which demonstrates that I is related to the integral 
along a circular arc of the intensity of an ideal fibre 
with the weighting factor 

exp[  (~'-- O')2 sin sin o-] 
2ct2 ]io [ ~  (12) a~ 

The  case  o f  the infinitely thin layer  l ine 

I f f  (l) is very sharp (e.g. a delta function having unit 
weight where l=  Zo) then the integrand of equation (9) 
[or (11)] vanishes except where the circle of integration 
(of radius v) intersects the layer line (of height Z0). 
This situation is shown in Fig. 3(b), point D. The coor- 
dinates of the point D are s = Ro, l=  Z0, 7 = ao where, 

cos ao = Zo/v 
Ro=v sin ao. 

If we substitute in (9) the form of the weighting factors 
(12) we obtain 

1 o 
I= -v-~-!z o/c~'ds)f(l) exp [ ('-~)21 

= 2~o J 

x io[ s i n T s i n a  ] ~ dl .  (14) 

If we introduce into (14) the condition that f ( l )  vanishes 
except when l= Zo (i.e. at the point D), then 

1 (a-ao)2 ] sin a sin ao 
I=w-~olint(R°)exp [ 2~2 / / ° [  C~o 2 - ]  

(15) 

where Ilnt(Ro) is the value of the calculated intensity 
integrated across the layer line. 

Except near the meridian 

[ sin O'O~o 2sin a .] i0 

is a slowly varying function of a so that equation (15) 
demonstrates that the intensity variation along a 
Debye-Scherrer arc is a Gaussian centred on the per- 
fectly orientated layer line. Away from the meridian 
(15) may be further simplified by making use of the 
asymptotic expansion of i0(x): 

1 
1 (16) io(X)- (2rex) 2 

putting 
Ro 2 

sin ao sin a _  ~ v- T 
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and using (16) we finally obtain 

1 ( a - a o )  z 
I =  Iint(g0) ~ ½ exp 2c~2 

c~0R0 " 

(17) 

Disorientation correction 

For the limiting case discussed above lint and I are 
related by a simple factor. Moreover fiat(R0) represents 
the intensity which would be observed from a per- 
fectly orientated fibre. Therefore the intensity meas- 
ured along the middle o f  the layer line [I (R0)] may be 
used to calculate /int. If we define the disorientation 
correction K as 

K--  X~nt/l, 

we see from equation (17) setting a=ao that 

K -  lint _(2rc)w2c%R (18) 
I 

[note that (18) is dimensionally correct because Ii , t /I  
has the dimension length-1]. Within the validity of the 
approximations given above (i.e. not too near the meri- 
dian) (18) is the disorientation correction for fibres if 
the measurements are made at points along the middle 
of the layer line. 

Geometrical meaning of the correction factor 

The form of (18) may be illustrated by a simple geome- 
trical construction (Fig. 4). The figure shows a section 
through the intensity in reciprocal space arising from 
three diffracting particles (a, b, and c). b is perfectly 
orientated, a and c are both disorientated through 5 °. 
Each particle gives rise to a set of layer lines (0,1, 
2, 3). By inspection of the zero layer line it is obvious 
that the fanning out of the layer lines will give rise 
to a relationship of the kind 

Ioc lint 
R " 

Rather more unexpectedly Fig. 4 demonstrates that 
this relationship is also valid on layer lines (1), (2) 
and (3) [on condition that ICat¢(s) is constant]. 

The simple correction factor (18) will break down 
near the meridian on upper layer lines because the 
layer lines form a caustic and not a point of inter- 
section and because the delta function approximation 
to f ( l )  is too crude. It is always possible by use of 

o b c 

c 

3 

c 

Fig. 4. A simple geometrical illustration that the disorientation 
correction is approximately proportional to R on all layer 
lines. The axes of three particles (a,b,c) are shown together 
with the disorientated layer lines (0,1,2,3) arising from these 
particles. If the density along these layer lines is uniform 
then it can be seen that the intensity will drop off as 1/R on 
all layer lines. Upper layer lines do not strictly intersect in a 
point but for small angles of disorientation the caustic formed 
is practically a point. 

the full form of the relationship between I and Ica~c 
(equation 9) to calculate I from Italy- The inverse 
procedure near the meridian is only possible in favour- 
able circumstances. In practice (18) also breaks down 
near the meridian because the X-ray spot on the film 
is relatively large. An investigation of this effect to- 
gether with a numerical analysis of the validity of the 
various approximations used is given in the following 
paper (Stubbs, 1974). 

We are grateful to Drs S. Harrison and A. Klug 
for helpful discussions. We thank Mrs Angela Mott 
and Mrs G. Eulefeld for the diagrams. 
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